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ABSTRACT

This report presents a review of recent non-linear and robust filtering results
for stochastic systems. We focus on stability and robustness issues that arise
in the filtering of real systems. Issues such as numeric stability and the effect
of non-linearity are also considered.

The report begins by introducing the famous Kalman filtering problem
before proceeding to introduce the extended Kalman filter and related stability
results. Robust forms of the Kalman filter and extended Kalman filter are also
considered and finally a particle filtering approach is presented.

The report is intended to lead readers with a familiarity of the Kalman fil-
tering problem through some of the more important recent {(and not so recent)

results on stability and robust filters in non-linear filtering problems.
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Non-linear and Robust Filtering: From the Kalman Filter
to the Particle Filter

EXECUTIVE SUMMARY

In the context of signal analysis, filtering is the process of separating a signal of interest
from other signals, termed noise signals. All filtering of signals is based on assumptions
regarding the nature of the interesting signal and the noise signals. Often filters are used
even when it is known that these assumptions do not hold. In this report we present
a review of standard filtering techniques, examine techniques for improving the numeric
stability of filters, present stochastic stability results and examine filters that mitigate for

the possibility of modelling errors.

Modern guided weapons are becoming required to operate in highly non-linear and time-
varying situations. In these types of engagements, assumptions of linearity no longer
hold and model uncertainties in the form of unmeasured aerodynamic coefficients and
complex non-linear aerodynamics are common. Filtering is an important sub-system of
any guidance loop that is needed to estimate required engagement information. For these
reasons, a full understanding of the effects of non-linearity and model uncertainty on

filtering solutions is required.

This report provides a review of existing stochastic filtering results from the well known
Kalman filter and non-linear and robust generalisation of the Kalman filter through to new
particle filter approaches for non-linear state estimation problems. Several of these filters
are tested in simulations of a typical interceptor-target engagement to examine them in a

guided weapon context.

An improved understanding of filtering techniques is required to aid support of present
upgrade programs involving the guidance loops of new standoff missile systems. This
understanding is necessary for the support of future weapon procurement and upgrade

programs.
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1 Introduction

The purpose of filtering is to separate one thing from another. In the context of signal
analysis, filtering is the process of separating a signal of interest from other signals termed,
noise signals. All filtering of signals is based on assumptions regarding the nature of the
interesting signal and the noise signals. A system model is a collection of assumptions that
describe the relationship between the signal and noise. Ideally the assumed system model
should perfectly describe the true system but this is not often the case. Often filters are
used even when it is known that these assumptions do not hold. In this report we examine
how the performance of a filtering solution is effected by mismatch between the assumed

model and the real system.

The most famous and commonly used assumptions are that the system is linear Gauss-
Markov and that the noises are Gaussian. It has been shown that under these assumptions
the Kalman filter is the optimal filter for separating the interesting signals generated by a
linear Gauss-Markov model observed in Gaussian noise [1]. Because the Kalman filter is
an optimal filter (in a minimum mean squares sense) and is a finite dimensional solution
(can be implemented using a finite number of statistics which can be calculated using a
finite number of recursions) it has been applied to a large variety of filtering problems.
The continuing success of the Kalman filter in many applications has encouraged its use

even in situations where it is clear that the system is non-linear.

An important implementation consideration is the numeric stability of any filtering algo-
rithm. Although the Kalman filter is optimal in a minimum mean least squares sense, it
has been shown that it can be numerically unstable when implemented on a finite word
length processor [2]. Such numeric issues are probably not as significant today as they
where in the early 1960s because of the advances on computer technology; however, in some
situations the numeric problems of the standard form of the Kalman filter may still be an
issue. For example, in very low noise situations the numeric errors due to finite-precision
arithmetic can result in the standard form of the Kalman filter becoming unstable [2].
This report gives details of how to avoid some of the numeric problems inherent in the
standard form of the Kalman filter by implementing a numerically stable form such as the

U-D covariance form of the Kalman filter.
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Apart from the Kalman filter, there are very few finite-dimensional optimal filters for
stochastic filtering problems. For general non-linear problems, when a finite-dimensional
optimal filter is not possible, sub-optimal numeric or approximate approaches must be
used. The simplest approach is to linearise the non-linear model about various operating
points and to use an extension of the Kalman filter, known as the extended Kalman filter
(EKF). Details of the extended Kalman filter are given in this report as well as some recent

stability results that establish under what conditions the extended Kalman filter will give

reasonable filtering solutions.

Both the Kalman filter and the extended Kalman filter assume that true system model is
known with certainty for design purposes. This is unlikely in most practical situations. It
is more likely that the system model will not be known with complete certainty. Kalman
filtering theory does not establish how the Kalman filter performs if system assumptions
are incorrect. In fact, even a very slight error in the system model can result in poor filter
performance. The question of how to design filters when there is some uncertainty in the

system model is addressed by robust filtering theory.

In this report we present some recent results describing the robust linear Kalman filter.
The robust Kalman filter (or set-valued state estimator) allows state estimation for any
member of a structured set of model (with bounded rather than Gaussian noise terms).
The filter is termed a set-valued state estimator because it determines the set of possible
values that can taken on by the state process given the true system is one from a structured
set of models. That is, it determines every possible state sequence that can match the
observations. Under the model uncertainty, any of these sequences are possible and the

set of estimated state sequence is usually represented by a sequence in the middle of the

set.

Although not considered in this report, there are several other approaches that allow for
some model uncertainty. Risk-sensitive filtering is an optimal filtering approach in which
the filtering criteria is modified in a particular way to mitigate the possibility of modelling
error. Risk-sensitive filters tend to have better conditional mean error performance than
H® filtering (but less than optimal conditional mean filters) and have some capability
to handle modelling errors [11, 12, 13]. An alternative approach is mixed criteria state

estimation which is examined for hidden Markov models (HMM) in [14].
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The Kalman filter, the extended Kalman filter and the robust filter approaches all estimate
state information such as mean and variance. An alternative approach is to consider the
evolution of the probability density functions (PDF) directly. The integrals describing the
evolution of these probability density functions generally do not have analytic solutions
(except in simple cases corresponding to the Kalman filter) and solutions must be obtained
through numeric methods. One interesting numeric approach that has recently appeared

is the particle filter approach.

In the particle filter approach the probability density function of the system state is ap-
proximated by a system of discrete points (or particles) which evolve according to the
system equations [16]. At any time point, the set of particles can be used to approxi-
mate the probability density function of the state. It can be shown that as the number
of particle increases to infinity, the approximation approaches the true probability density
function [16]. These particle filter approaches have the advantage that they work for any
general non-linear system description. Closely related to the particle filter approach are
importance sampling approaches [26] and Monte-Carlo simulation techniques [27]. In this
report we present the particle filter approach but no details of these related techniques are

provided.

Another technique for estimating the PDF directly is via an HMM approximation. If the
state space is naturally bounded then it is possible to a.ppro:éimate the state space by finite
regions and use the powerful signal processing tool developed for hidden Markov models

to estimate the PDF. An outline of an HMM approximation technique is given.

This réport is organised as follows: In Section 2 the Kalman filtering problem is presented
and the optimal solution is given. In Section 3 a numerically stable form of the Kalman
filter known as the U-D covariance factorisation of the Kalman filter is presented. The
extended Kalman filter along with stability results are then presented in Section 4. In
Section 5 some robust filtering results are presented. The particle filtering approach is
represented in Section 6. Some details of hidden Markov model approximations are then
given. Some application examples are presented in Section 7 which compare the various

algorithms presented in this report. Finally, in Section 8 some conclusions are presented.
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2 Discrete-Time Kalman Filter Problem

This section introduces a model for a discrete-time linear Gauss-Markov system and the

optimal filter for the state variable. This optimal filter is known as the Kalman filter.

Consider a stochastic process z taking values in RV. Assume that the dynamics of z

are described for k € Z*, where Z* is the set of non-negative integers, by
Tr4+1 = Axzr + Brwg (2.1)

where A, € RV*N) is called the state transition matrix, By € R(N*5) and wy, € R(5%Y)
is a sequence of independent and identically distributed (¢d) N(0,Q) vector random
variables called the process noise. The matrix Q is a non-negative definite symmetric
matrix. We assume that zg is a N (o, Fp) vector random variable. For simplicity we
assume that there is no input into this system but the results in this report can easily be

extended to a system with a measured input signal.

Further suppose that zj is observed indirectly via the vector measurement process yx €
R(Mx1) described as follows:

Yk = CrTi + v (2.2)

where C;, € R(M*N) js the called the output matrix and vy € RMX1) i 4 sequence of
#id N(0, Ry) scalar random variables called the measurement noise. We assume that Ry
(which is a non-negative symmetric matrix) is non-singular. Let Vi := {yo,¥1,---, ¥k}

denote the measurements up to time k. The symbol := denotes “defined as”.

2.1 The Filtering Problem

The filtering problem stated in the broadest terms is to determine information about
the state zj from measurements up until time k& (or £ — 1). For stochastic processes,
this information is represented by the conditional probability density functions (PDFs)
p(zk| Vi) (or p(zk]|Vk—1)). Usually we limit our interest to statistics of the state such as
the mean and variance that can be calculated from these PDF's, but this is not always the

case (see Section 6 later in this report). The filtering problem then becomes the problem

of estimating these particular statistics.
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For the special case of the linear Gauss-Markov system with Gaussian initial conditions
it can be shown that the PDFs at each time instant are Gaussian and hence the PDFs
can be completely specified by the mean and variance statistics (which is a finite number
of quantities). For this special case, a finite-dimensional filter (the Kalman filter) can be
implemented that optimally calculates these two statistics and hence completely specifies

the PDFs at each time instant.

In general terms, the linear Gauss-Markov filtering problem is a special case and for most
other filtering problems the relevant PDFs can not be represented by a finite number of

statistics and finite-dimensional optimal filters are not possible.

Let us now concentrate on the filtering problem associated with the Kalman filter. Let us
define the conditional mean estimates &5y := Elzx|Vi-1] and Zy == Ezg|Vk]- And let
us also define the error covariance matrices Py_1 := E[(zx — Sgp—1) (Tk — Tik-1)|Ve-1]
and Py, := E(zr — Zxpi) (T — Sxpp)’ [ Vil

The discrete-time Kalman filtering problem is stated as follows: For the linear system
(2.1)(2.2) defined for k > 0 for which the initial state zo is a Gaussian random variable
with mean &g and covariance Py which are independent of {wy} and {vy}, determine the

estimates Tyx—1 and Ty, and the associated error covariance matrices Py _; and Py

2.2 The Kalman Filter

It is well known that the discrete-time Kalman filter is a finite-dimensional optimal solution
to this problem [1, 2, 3]. Here finite-dimensional in the sense that 1t can be implemented
exactly with a finite number of operations and a finite amount of memory and optimality
is in a conditional mean sense. The optimality of the Kalman filter can be established in
a variety of ways and we refer the reader to [1] for a good presentation. In this report we

simply present the Kalman filter without proof.
The standard implementation of the Kalman filter is the following recursion.
Tpp—1 = ApZr_1p-
Pik—1 = Ar1Po_ijp-14_) + Br_1QrBy
-1
Ki = Pup-1Cy [CkPka—.lCI,c + Rk]

Trp = g1 + Kk [yk - Ckfi'ldk—l]
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Pyr = Pyg—1 — KkCr Py (2.3)

where o9 = E[zo] = &o and Py = E[(zo —£0)(z0 — £0)'] = Fo. The recursion (2.3) is one
of the many algebraically equivalent recursions for the same estimates Zy;_, and Zy .

It is common to interpret each iteration of the Kalman filter equations as two steps.
The first two equations in (2.3) correspond to a time update process and the final three
equations as a measurement update process. In the time update stage, the previous
estimate is used to predict the state value (and the covariance) at the next time instant.
In the measurement update stage, the prediction of the state (and the covariance) is

corrected using the information in the new measurement.

Alternatively, the Kalman filtering problem can be interpreted as designing K}, such that
the filter error is white (in particular uncorrelated), see Figure 1. To design Kj, knowledge
of Ay, Ck, Qr and Ry, is required. If these quantities are not known with complete certainty

then the conditional mean optimal filter can not be designed.

Yk

)’(‘ + Filtering
k|k-1 C - Error
k

A

Delay

A
Xk

u Ky

Figure 1 (U): Block diagram for state estimate update as a whitening filtering

Remarks

1. It can be shown that the Kalman filter: is the minimum variance filter [1, 8], is
unbiased [1], and is a recursive Bayesian estimator optimal in a minimum mean
square sense. In addition, if the Gaussianity assumptions on zo, {w} and {v;} no

longer hold then the Kalman filter is the minimum variance filter among the class

of linear filters [1, 8].
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2. Under reasonable conditions (see [1, 8]) the Kalman filter is asymptotically stable
in the sense that it will exponentially forget any initial condition errors. This is an
important property because it means that errors introduced during filtering do not

necessarily make the Kalman filter diverge.

3. The recursion (2.3) is the standard form of the Kalman Filter. Another common
form of the Kalman filter is the innovations form [1]. There are many other forms of
the filter that include slight modifications of the covariance and gain equations and

in the next section we consider one form that has improved numeric stability.

3 U-D Factorisation Form of the Kalman Filter

3.1 Filter Stability

According to Maybeck [2]: “An algorithm can be said to be numerically stable if the
computed result of the algorithm corresponds to an exactly computed solution to a problem
that is only slightly perturbed from the original one.” The standard formulation of the

Kalman filter is not always numerically stable in this sense [4].

There can be numerical problems in implementing the above Kalman filter recursions on
a finite word-length digital processor. For example, although it is theoretically impossible
for the covariance matrices to have negative eigenvalues, such a situation can arise due
to inaccuracies in numerical calculations. Such a condition can lead to instability or

divergence of the Kalman filter.

To avoid the numerical problems of the standard formulation of the Kalman filter equa-
tions, many alternative recursions have been developed (2, 1]. These alternative recursions
update the state and covariance matrices in a way that ensures that numerical problems
are avoided. These formulations are algebraically equivalent to the standard Kalman filter
equations but exhibit improved numerical precision and stability [2]. Because these alter-
native forms are algebraically equivalent, the design and tuning of the optimal filter can
be done using the standard equations, ignoring errors caused by numerical instability, and

the numerically stable forms only need be considered when the actual implementation is

performed [2].
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It should be noted that the sort of numerical instabilities inherent in the standard Kalman
filter equations are issues that appear when some of the measurements are very accurate
[1], when the process covariance has large dynamic range [7] or when the Kalman filter
is applied to non-linear problems through a problem formulation such as the extended
Kalman filter. In general terms, the numerical precision of modern computational tech-

nologies has reduced the need to use numerically stable forms of the Kalman filter.

There are two major advantages in using one of the numerical stable forms of the Kalman

filter [1]:

1. The recursions can be formulated in a way that ensure that computational errors

cannot lead to a matrix (Pk|k or Pyx—1) that fails to be nonnegative definite or

symmetric.

2. The numerical conditioning of the recursions can be improved so that only half as

much precision is required in the computations.

The approach presented here to enhance the numerical characteristics of the Kalman
filter is known as the “U-D covariance factorisation” developed by Bierman and Thornton
[4, 5, 6]. There are several other forms of the Kalman filter with increased numeric
stability, such as the square root forms, see [2, 1] for details. We consider only the U-D

factorisation in this report because it offers a reasonable compromise of numerical stability

and increased computational effort [2].

3.2 The U-D Factorisation of the Kalman filter

The U-D factorisation involves expressing the error covariance matrices as

Pyk_1 = U(klk —1)D(k|k — 1)U(klk— 1) and
Pur = U(k|k)D(k[k)U (k|k)' (3.1)

where U are unitary upper triangular matrices and D are diagonal. The above U-D
factorisation always exists for square symmetric, positive semi-definite matrices [2]; hence,

the error covariance matrices Py and Py, can always be factorised this way.
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Although the U-D factorisation is not unique we can work with the following factorisation

for initialisation purposes: For a P (either Py;_, or Pye)

N
Djj = Pjj— ) DuUj and
£=j+1
0 i>j
Uj = 1 i=j (3.2)
(P — 001 DullUse) /Dsz i=35—1,j=2,...,1

where Uj; is the 45 th element of U etc. and

Dyy = Pyy and
1 i=N
Ui = {RN/DNN i=N-LN=2..,1 (33

To develop the filter itself we consider the time update and measurement update separately

in the following subsections.

3.3 Time Update

It can be shown that the time update equations for the U-D factorisation of the Kalman

filter can be implemented as follows (taken from [2]). Using the following definitions:

Ve = [4aU*1EY B ),
3 p-1k-1) ¢
D = s
k+1 |: 0 Qk—l ’
[a1]az]...lan] = Y/ and
Uﬁlk—l) = lforj=1,...,N (34)

where O are zero matrices, D*~1%=1) and U*-1k-1) denote the U-D factorisation of
Py_yjk—1; Y is an (N x (N + S)) matrix, Dy, is an (N + S x N + S) matrix and
a; are 2N vectors. Then the time update equations can be calculated recursively for

{=N,N~1,...,1:

G = f)kaé

DY = aje
dp = /DY

plkle=1) _ o

it e (k[k=1) J=12....4-1 (3.5)
a; = aj—Ujg ag
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where D¥l¥=1) and U*lk-1) denote the U-D factorisation of Prjk—1- Here ag, ¢¢ and dy are

temporary variables that are reused. The state estimate is updated as follows:

Erp—1 = Ak-185-1jk-1- (3.6)

3.4 Measurement Update

The scalar measurement update equations for the U-D factorisation form of the Kalman

filter can calculated using the following definitions:

f — U(k]k-—l)lcllc

vj = D Vg forj=12...,N
a = R and (3.7)
U = 1 for j = 1,2,...,N. (3.8)
Then the time update equations can be calculated recursively for £ =1,..., N:
ag = ag-1+ feve
Du(klk) = Du(k“c - l)ag_l/a[
by = v
pe = —fofae
Uje(klk) = Uje(klk — 1) + bjpe :
=1,2,... -1 .
b = b+ Up(hle—Dw | 27 BB ED (3.9)

where ay, by, and py, are temporary variables that are reused. Vector measurement updates

can be handled as a number of scalar measurement updates.

Let b denote the vector formed from elements by, then the state is updated as follows:

Kk = b/aN

T = Zpg—1 + Ki(yk — Cxpp—1)- (3.10)

3.5 Computational Effort

The improved numeric properties of the U-D factorisation form of the Kalman filter are

achieved at the cost of increased computational effort. According to Maybeck [2] the
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computational effort required to implement the U-D factorisation is slightly greater than
the standard form. However, considering the requirement for numerical stability, the U-D
form of the algorithm appears to offer a reasonable compromise between computational

efficiency and numerical stability. See [2] for more details and a description of the actually

computational effort required.

In most situations the standard Kalman filter can be made to work by increasing the
precision of computations as required or using ad hoc modifications to reduce the dynamic
range of variables [1]. However, in these situations, better performance can often be
achieved by the U-D form of the Kalman filter using less precision in the computations.
For these reasons, a number of practitioners have argued that numerically stable forms of
the Kalman filter should always be used in preference to the standard form of the Kalman

filter, rather than switching to a stable form when required [2].

Finally, it should be noted that in high measurement noise situations the standard Kalman
filtering equations tend to be fairly stable, reducing the motivation for numerically stable
forms. In fact, in some high measurement noise situations, the standard Kalman filter
equations can be simplified though approximations that considerably reduce computa-

tional burden with little loss in optimality and without introducing stability problems

[1]-

4 Extended Kalman Filter

The discussion so far in this report has been directed towards optimal filtering of linear
systems using the Kalman filter. However, in most realistic applications the underly-
ing physical system is non-linear. In some situations, slightly non-linear systems can be
approximated as linear systems and the Kalman filter provides a satisfactory filtering so-

lution. In other situations, the system may have obvious non-linear characteristics that

can not be ignored.

Filtering for non-linear systems is a difficult problem for which few satisfactory solutions
can be found (we consider several algorithms in this report that are somewhat satisfactory
in some situations). The sub-optimal approach considered in this section is an extension

of the Kalman filter known as the extended Kalman filter.

11
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The extended Kalman filter is posed by linearisation of a non-linear system. Consider the

following non-linear system defined for k € Z*:

Ty = ag(zk) + bp(zr)wi

v = cx(zr) + vk (4.1)

where ag(.), bx(.) and ci(.) are non-linear functions of the state and wy,v; are defined as

before. Let us define the following quantities:

Ay = dax(z) . B = Ob(z) and G = 6ng(;:1:)

oz T=ZTp|f-1 T=Zg|k1

(4.2)

Oz T=Thy k-1

Let us also introduce matrices @} and R} which are related to the covariance matrices for
noises wx and vg. However, as will be shown later in Section 4.2, the matrices (; and R}

need not equal Q¢ and Ry and other positive definite matrices are often better choices.

The extended Kalman filter is implemented using the following equations:

Tpr = ap-1(Tk—1jk-1)

Pyk—1 = Ap-1Pe_1p-14%_1 + Br-1Q%Bj,_;
Ki = Pyy-_1Cy [Ckpklk—lcllc + RZ] -
Zpe = ZTgjp-1 + Ki [yk - Ck(i'klk—l)]

Pk = Prjp—1 — KxCrPrpp—1- (4.3)

The equations are no longer optimal or linear because A etc. depend on Zy;_; etc. The
symbols Zgjk—1, Zg—1jk—1, Pejg—1 and Py_1jx_, now loosely denote approximate conditional
means and covariances respectively.

The extended Kalman filter presented above is based on first order linearisation of a non-
linear system, but there are many variations on the extended Kalman filter based on
second order linearisation or iterative techniques. Although the extended Kalman filter or
other linearisation techniques are no longer optimal, these filters can provide reasonable

filtering performance in some situations.

4.1 U-D Covariance Form of the Extended Kalman Filter

A U-D factorisation form of the extended Kalman filter can be posed by appropriate

modification of U-D factorisation of the Kalman filter as follows.
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Equations (3.10) and (3.6) are replaced by the following equations:

Tgg—1 = ak—1(Tp-1k-1) and

T = Tip—1 + Be(e — ce(Zrpp-1)- (4.4)

4.2 Stochastic Stability of the Extended Kalman Filter

A key question when applying an extended Kalman filter to a particular non-linear problem
is when will the extended Kalman filter be stable and when will it diverge? Heuristic
arguments have been used to suggest that if the non-linearities are linear enough and the
filter is initialised well enough then the filter should be stable. This heuristic argument has
encouraged the use of the extended Kalman filter in a wide variety of signal processing,
control and filtering problems. However, without any solid stability results, the error
behaviour of the extended Kalman filter needs to be examined through testing whenever
applied [8, 1].

Recently, solid stability results have established conditions on the non-linearities and ini-
tial conditions which ensure that the extended Kalman filter will produce estimates with
bounded error [9, 10]. These results answer some of the stability questions surrounding

the extended Kalman filter [9, 10]. This section repeats the stability results of [10].
Consider again the non-linear system (4.1) defined in Section 4:
zrt1 = ak(zx) + be(ze)we
Yo = ck(Tk) + vk (4.5)
Let us define the following quantities
p(zrZk) = ap(zr) — ap(Zk) — Ax(zr — Zk)
x(zk, Zx) = crlzk) — cx(Zr) — Crlzr — Tk)

where Zj is some estimate of the state (see Figure 2 for a graphic interpretation of
@(xk, Zx)). Also, we define the estimation error as Zy = zx — Zxjx. Then the following

theorem is presented in [10].

Theorem 1 (Theorem 3.1) Consider the nonlinear system (4.1) and the extended Kalman
filter presented in Section 4. Let the following hold:

13
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N

Figure 2 (U): Graphical interpretation of p(zk,ZTy)-

1. There are positive real numbers a,¢,p,p,q,r > 0 such that the following bounds hold

for all k > 0:
[4l]] < a
IICkl] < ¢
pl < Pyg-1 <pl
g < Q
r < Rj (4.6)

2. Ay is nonsingular for all k > 0.
3. There are positive numbers €,, €y, Ky, Ky > 0 such that

lle(zk, Ze)ll < mollze — Zxl?

Ix(zr, Z0)|l < syllze — Zkl|? (4.7)

for T, Ty with ||z — Zx|| < €, and ||z — Zx|| < € respectively for all k where Iy,

is any estimate of xx at time k.

14
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Then the estimation error is bounded with probability one, provided the initial estimation

error satisfies
l1Zol] < € (4.8)

and the covariances of the noise terms are bounded via Qr < 01 and Ry < 81 for some

d, €.

Remark

4. The proof of Theorem 1 is given in [10].

5. This result states that if the non-linearity is small then the EKF is stable if initialised
close enough to the true initial value. The greater the deviation from linearity the

better the initialisation needs to be.

The proof presented in [10] provides a technique for calculating conservative bounds for
¢ and 6. Simulation studies suggest that € and & can be significantly larger than these

bounds in some situations.

We define the following to repeat the bounds presented in [10]

€ := min(ey,€y) 4.9)
E = Kyo+ Ezﬁ;nx. ) (4.10)
We also define the following
K &
Knonl = E (2 a+ _ﬁ_‘> -+ RE) (411)
P r
S ae’p?
Knoise = — + Qp (4.12)
p pr
q
= 1-1/(14+ . 4.13
* / ( T +:552/£)2) (£13)
Then
./ «a
€ = min (e7 - > (4.14)
2Pkinont
and
5 oe? (4.15)
= — . .15
2PKnoise

To gain an understanding of the stability of the extended Kalman filter consider the

following special case.

15




DSTO-TR~1301

16

Example: Quadratic Non-linearities

Consider the situation where system functions, ax(.) and ci(.) are quadratic in the state.
Then ¢ and x are bounded in (4.7) for all €, and ¢,. Hence Kpon is unbounded and
hence ¢ is unbounded. The conclusion is that if the non-linear elements in the model are

quadratic then the extended Kalman filter is stable for any initial estimate.

4.3 Higher-Order Approximation Methods and Other Is-
sues

The extended Kalman filter presented above is based on a first-order Taylor series approx-
imation of the system non-linearity. There are a number of variations and generalisation
of the ideas used in the extended Kalman filter [1, p.196]. These ideas include second (and
higher order) Taylor series approximation of the non-linear system, banks of extended
Kalman filters (or the Gaussian sum approach), Monte-Carlo simulation techniques [27)
(related to the particle filter ideas presented in Section 6), higher-order moment filters,

and others.

In general terms, any one of these filtering approaches may be superior to the extended
Kalman filter in a particular situation, but none of these approaches is superior in all ap-
plications. The particular type of non-linearities present in a system may make particular
approaches more fruitful than others, but there are no real guidelines. Some approaches,
such as Monte-Carlo techniques, may appear to be suitable to a large class of problems;

however, their general applicability is at the cost of elegance and computational load.

A reasonable approach (based on the previous experiences of the author) maybe to use
the simplest feasible filtering approach and then re-evaluate the choice of filter if the
desired performance is not achieved. It is likely that the computational requirements of

one of the more complicated approximate filtering techniques is sufficient motivation to

first investigate a simpler approach.

One possible trap to avoid is the posing of unrealistic filtering problems. It is easy to pose
filtering problems that are not solvable due to observability problems. In other situations,
reasonable filtering performance can be difficult to obtain because the observed system is

close to unobservable. Observability is a control system’s concept that is defined as the
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ability to determine the state from observations. For linear systems there are easy tests
for observability (see [1, 29] or an undergraduate control systems text) but questions of

observability are more complicated in non-linear systems [28].

The observability condition is only one part of the question, because a system is either
observable or not. A practitioner should also be interested in the relative difficulty of a
filtering problem. One way of quantifying the difficulty of achieving good state estimates
in a particular filtering problem is via the Fisher information matrix and the Cramer-Rao

lower bound [31, 30].

The Fisher information matrix describes how much information about the state variable is
available in the measurements. The Cramer-Rao bound is a lower bound on the amount of
data required in a particular problem to achieve a particular amount of certainty in esti-
mation. A Fisher information matrix with poor characteristics highlights that a particular
problem is difficult in a fundamental way (and changing the filtering algorithm will prob-
ably not significantly improve filtering performance). When a system is not observable or
the Fisher information matrix for the problem has poor characteristics, the practitioner

will probably need to consider redesigning the system.

The task of choosing an appropriate model and filtering algorithm for a non-linear system
is non-trivial. It is implicit in the preceding discussion that the system model must reflect
the nature of the true system. This report does not address any of the approaches (neither
data based nor first principles based) for designing models of systems, see [30] for an
introduction. Once a system model has been obtained, the observability of this system
should be tested and the Fisher information matrix examined to determine the difficulty

of the filtering problem.

Once comfortable that the measurements have enough information, a filtering algorithm
can be chosen. It is difficult to give general guidelines for algorithm choice but experience
with similar problems can provide useful insights. A practitioner will probably have a bias
towards their favorite algorithm, or an algorithm that worked on a similar problem, and

may try this algorithm first.

Quantifying the achieved performance of an algorithm can also be difficult. Comparison
with similar problems can both be helpful and misleading. A reasonable approach would

be to compare the performance of the algorithm with the performance of an higher-order

17
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algorithm. This comparison may give a feel for the trade-off between complexity and

filtering performance for this problem and what sort of algorithm will give the desired

filtering performance.

In the next section we consider the filtering when the system model is not known with

complete certainty.

5 Robust Filtering

The Kalman filter has been applied to a large class of problems. However, in many
situations the system model is non-linear or uncertain in the sense that the model is not
completely known. The previous section dealt with use of the extended Kalman filter on a
linearised version of a non-linear system. Even in situations where the non-linear system is
completely known the extended Kalman filter may give poor performance. In a situation
where there is model uncertainty, it can be shown that the Kalman filter and the extended
Kalman filter are often very poor filtering choices [24].

In recent years, a number of new approaches have been proposed for the filtering prob-

lem that are related to robust control techniques. This includes approaches such as H*

filtering [25], risk-sensitive filtering [11, 12] and robust filtering [24].

5.1 The Robust Kalman Filter

In this section we describe the development of the robust Kalman filter for uncertain
discrete-time systems (this development is given in [24]). The description given here is in
terms of a uncertain systems where the uncertainty has a particular form. However, the
results can be used for fairly general systems by transforming the uncertain system into

the following form.

Cousider the following time-varying uncertain discrete-time system defined for k € Z*:

Tes1 = ApTp + Biwg,
2z, = KpTg,
Yo = CkTp + vk (5.1)
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where again zj, is the state, wy € RP and vx € R! are uncertainty inputs, z; € R is the
uncertainty output, yx € R! is the measured output, and Ay, B,ﬁ, K; and Cj are given

matrices such that Ay is non-singular.
The uncertainty in this system is constrained to satisfy the following constraint for all k.

Let N = N’ > 0 be a given matrix, Ty € R™ be a given vector, d < 0 be a given constant,
and Q; and Ry be given positive-definite symmetric matrices. The following constraint is

termed the sum quadratic constraint:

k-1 k-1
{zo — i‘())'N(.’BO - :'i‘()) + Z(w}ngg + ’Ué+1Rg+1’vg+1) <d+ Z HZ[_,_IHZ for all k. (5.2)
£=0 =0

A system (5.1) satisfying the sum quadratic constraint can be thought of as a linear system
driven by a process noise and observed in a measurement noise which can be anywhere
in a constrained set. This description of an uncertain system is fairly general because

uncertainties in system matrices such as A can be thought of as noise terms.

Before proceeding to present filtering results, we give an example of a structured uncer-
tainty system that satisfies (5.1) and (5.2). Consider a system where there is some uncer-
tainty in the state transition matrix. The uncertainty could result because the dynamics of
the physical system can not be determined but these dynamics need to be modelled math-
ematically in some way. This uncertainty may be represented by the following equations

(this example is given in [24]):
Ter1 = [Ap + Bi'AKilze + By'ny,
1
yr = Crrp+7g, with HA;CQ]?“ <1 (5.3)
where A}, is the uncertainty matrix, ny and iz are noise sequences, B} = [Bi!, Bf?], and

||I.]| denotes the standard induced matrix norm. The system uncertainty is in the state

transition matrix because the value of Ay is not known. Also, let this system satisfy the

condition
k-1 k
(zo — Z0)' N (2o — Fo) + 2K QoKozo + _ (ne) Qeng + Y _(ng) Ryfig < d.
=0 =0

To establish that (5.3) is admissible for the uncertain system described by (5.1),(5.2), let

wy = [ Aan:ﬂL’k ]
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and vg = 7y for all k& where
L
1A:QE1 <1

for all k. Then condition (5.2) is satisfied. Hence system (5.3) satisfies the requirements of

the theory and the results developed in the following section can be applied to this system.

5.2 The Set-value State Estimation Problem

The filtering problem examined in this section can be stated as follows: given an output
sequence {¥o,¥1,---,¥k} then find the corresponding set of all possible states zy at time

k with uncertainty inputs and initial conditions satisfying the constraint (5.2).

Definition 1 The system (5.1),(5.2) is said to be strictly verifiable if the set of possible

states z, at time k is bounded for any z¢, {yx} and d.

Definition 2 The output sequence {y, . .., yx} is realizable if there exist sequences {zy},

{wi} and {vg} satisfying (5.1) and (5.2).

In addition to solving the state estimation problem, the results that follow also solve the
following problem: given an output sequence, determine if this output is realizable for the

uncertainty system [24]. Thus, the following results are useful in answering questions of
model validation [24].
The solution to the filtering problem involves the following Riccati difference equation:
Fiy1 = [BpSkBx + Qi]* BiSi A,
Sk+1 = ApSk[Ax — BrFiq1] + Chp1Re41Cks1 — Kj1 Kiy1
So = N (5.4)
where
fik = A;l, Bk = AkBé
and [.]# denotes the Moore-Penrose pseudo-inverse (see [1]) if an inverse does not exist.
Solutions to the Riccati equations are required to satisfy the following conditions:
B,’ESkBk +Qr > 0 and
N(BpSkBr +Qr) C N (ASkBx) (5.5)
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for all k. Here N denotes the operation of taking the null space of a matrix.

The state estimate solution requires the following additional equations [24].

Mha1 = [Ax — BeFrsa]'mk + Cigi Res19k+1
n = Nz,
grk+1 = Gkt y;c+1Rk+1yk+1 - 7))'ch [B;cskBk + Qk]#Bllc'Uka
g9 = zoNzo. (5.6)

Theorem 2 [2/] Consider the uncertainty system (5.1),(5.2). Then the following state-

ments hold:

(i) The uncertainty system (5.1),(5.2) is strictly verifiable if and only if there erists a
solution to the Riccati equation (5.4) satisfying condition (5.5).

(ii) Suppose the uncertainty system (5.1),(5.2) is strictly verifiable. Then the output
sequence {yi} is realizable if and only if pr({yx}) > —d where

p({yk}) = ni Sy ' me — g

(iii) Suppose the uncertainty system (5.1),(5.2) is strictly verifiable, then the set of pos-

sible state values at time k is

2

1 1
{zk €R":||Sfzr— S, *mx|| < pe({ye}) + d} . (5.7)

Proof: See [24, pp. 75-77).

The center of the solution set (5.7) can be used as a state estimate and hence it follows

that the state estimate at time k is &), = S 'mi, (see [24]).

To demonstrate the performance of the filter, consider the following example.

21
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5.3 An Example Robust Kalman Filtering Problem

This example was given in [24] to illustrate the robust filter. Consider the following

structured uncertainty system, ie. the form of (5.3).

ZTp41(1) 1.98 +0.01274A; -1 O zi(1) 0.707
Tk41(2) = 1 0 0 zr(2) | + 0 Tk,
Zg+1(3) 0.4 0 0.2 z(3) 0

yp = zx(3)+7x (5.8)

where z¢ = [0 0 0],

k-1 k
(10 +0.0127%)||zo) |2 + Y _(ne)® + Y _(Ar)* < 1
£=0 =1
and the uncertainty parameter Ay satisfies
1Akl <1

for all k. Note that even if Ay = 0 this filtering problem does not reduce to the linear-
Gauss filtering problem solved by the Kalman filter because the noise terms satisfy the

above sum quadratic constraint rather than having Gaussian density functions.

In this problem, the state equation is known with some, but not complete, certainty. The
variable A parameterises the possible values of the state transition matrix. We know

only that this parameter is constrained to a particular range.

To apply the results of Theorem 2 to this filtering problem, we consider the system in the

uncertainty form (5.1). In this case, the matrices 4, N, B!, 79, K, C, @, and R are given

by
198 -1 0 10 0 0 0.707 0.707 0
A={ 1 o0 o0 |[,N=|0 10 0 |,B'= 0 0 |,zo=10
04 0 0.2 0 0 10 0 0 0
C:[o 0 1], K=[0.0127 00], Q=landR=1 (5.9)

The constant d is given by d = 1.
To illustrate the performance of the robust filter, the system was subjected to the following

noise sequences:

0-5 fOI‘ k = 07 _ _ 1 .
= { 0 otherwise and 7y = ‘w_55111(k/10).
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It is straightforward to verify that the uncertainty input sequences
wp=[ ZyK'A" (ng)' ] and v =g
satisfy the sum quadratic constraint (5.2).

Figure 3 shows estimates of the first component of the state from the robust Kalman filter
applied to measurements from this uncertainty system. Lower and upper bounds for the
possible values of the state have also been plotted. The bounds on the state estimate were
obtained by numerically finding the largest value of the first component of the state in the

solution set (5.7).

: T T

— True State J
Estimate

- - Upper Bound

— - Lower Bound

e L
, ; . - <.

10 20 30 40 50 60 70 80 9% 100
Tume, k

Figure 3 (U): Results of Robust Kalman Filter.

1t is interesting to compare the performance of the robust Kalman filter and the standard
Kalman filter, based on the nominal system (ie. with Ay = 0), for this uncertainty system
(see Figure 4). The performance of the standard Kalman filter is very similar to the robust
Kalman filter and this suggests that there is no need for robust filtering with this system.
Increasing the energy of the noise sequences does not result in a situation where the robust

filter is significantly better than the standard Kalman filter.

6 Particle Filtering

An alternative approach to the filtering problem for general non-linear systems is the
particle filter. The previous approaches in this report could be called parametric (or

model based) techniques. Unlike the previous approaches, the particle filter attempts

23
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Figure 4 (U): Comparison of Robust Kalman Filter and the Kalman Filter.

to estinate the whole posterior PDF rather than particular statistics of the posterior

PDF. The particle filter is a non-parametric technique because it does not attempt to

parameterise the PDF.

The term particle filter includes the condensation algorithm, Bayesian bootstrap [16] or
sampling importance resampling filter [15]. All these approaches represent the posterior
probability density of the system state by a system of particles which evolve according to

the non-linear system.

In general, a very large number of particles may be required to adequately represent the
evolution of the system. However, it can be shown that any non-linear system can be

approximated by a particle filter if the number of particles is large enough.

6.1 Non-linear System Model

We introduce a slightly more general non-linear model. Again z;, and y; are the state

process and observation process respectively. Then we define the system for k € ZF as

follows:

Tp+1 = felzg,wy) and

v = he(zk, vg) (6.1)

where wy, and vy are noise terms with known distributions (not necessarily Gaussian).

Given the initial PDF of the system, ie. p(zoly—1) = p(2o), these density functions can
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in general be calculated for & > 0 as follows

perVe-) = [ plarlor)p(ora Vi) and (6.2)
plarye) = POy (6:3)

where

i

puDh1) = [ plurler)p(ail ). (6.4

In the special case of linear dynamics and p(zy) having a Gaussian distribution then
evaluation of the integrals can be simplified and this leads to the Kalman Filter. In general
these integrals can not be analytically evaluated and the PDF must be approximated
numerically. The particle filter technique is one way of developing a numeric approximation

to the PDF.

6.2 Importance Sampling

The particle filter approach provides a Monte Carlo approximation to the PDF that con-
sists of a set of random nodes in the state space st fori =1,...,N 5 (termed the support)

and a set of associated weights, wi for i = 1,..., N, which sum to 1 (see Figure 5).

The objective of choosing the weights and support is to provide an approximation for the

PDF such that
NS

> 9(shwg = / 9(x)p(zx)dey (6.5)

=1

for typical functions g of the state space. This approximation is in the sense that the

left-hand side equals the right-hand side as N¥ — co.

In importance sampling the support, sfc, is obtained by sampling values independently

from a probability measure (zy) (termed the importance PDF) and attaching weights

plsh)/plsh) 66
S o(s])/5(s]) (66)

w), =

Standard Importance Sampling Algorithm

The following algorithm is repeated from [15]. This algorithm uses the prior importance
function as mentioned in [16]. This algorithm assumes that p(zx41|zk), p(yx|zx) and p(zo)

are known.
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Figure 5 (U): Graphical interpretation of a particle filter
1. (Initialisation) Sample from p(z) to obtain initial support si. Assign weights w? =
1/NS.

2. (Preliminaries on step k) Generate an approximation of any required statistics from

the support and weight (si_;,wi_;) approximation for p(zg_1|Vs-1) using (6.5).

3. (Update using prior importance function) Now generate the next set of support

points from the model dynamics, that is

52 = fk—-l(sfc—lvw;;:—l) (6.7)
where wi_, is sampled from the noise distribution and weights

; P(yklsi)

Wy = —ys (6.8)
SN p(uelst)
4. Set k=k+1. Return to step 2
At any time, k expectations of g(zx) on p(Zk|yo,---,¥x) can be estimated as follows

NS
[ s@nperVidee = Y who(sh) (69)

i=1
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Hence, the mean and variance of zj can be estimated as
NS
Tk = Zwi(si)
s
By = > wh(sh — Zxw) sk — Zpp)"- (6.10)
i=1

A major limitation of the standard importance sampling is the degeneracy of the algorithm
[16]. As k increases the support si tends to be concentrated on a same section of the state
space (this is equivalent to having a smaller N' 5). This effect is shown in Figure 5 where
from time k to time k + 1 the support has been concentrated towards the centre. It has
been shown that the best approximation occurs when the variance of the weights is as
small as possible [16]. The performance of the importance sampling algorithm can be

improved by introducing the following resampling step

3.5 (Resample) The probability density function represented by (s}'c, w}c) is resampled to
an equally weighted support set (st, (N°)~1).

Remarks

6. The above algorithm uses the prior importance function which is very sensitive to
outliers and in many situations an alternative importance function should be con-

sidered, see [16].

7. Further extensions including stratified sampling [15], the optimal importance func-
tion [16], linearised importance functions [16] and branching particle systems [17]
may offer significant improvement over the importance sampling algorithm presented

above.
8. Convergence proofs as N — co are given in [16] and [17].

9. Particle filter methods may require very large numbers of particles to ensure a rea-

sonable approximation is obtained, see [17] for a low dimension example.
10. Particle filters can often be implemented in a parallel manner.

11. Particle filters can be sensitive to outliers [18] and the particle filter requires knowl-

edge of the initial PDF much like the extended Kalman filter {15, 16].
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6.3 Hidden Markov Model Approximation of the PDF

Another related method for approximating the evolution of the probability density function
is to approximate the PDF as a grid of points which evolve by the state equations [20],
see Figure 6. That is, the PDF is approximated by a probability mass function where the
probability of being in particular regions of the state space are represented by a single
number. Further, all points in the region are approximated by a single point in the region.
Under this representation, the probability of being in a region of the state space is known,
but it is not possible to determine the probability of being at a particular point in the
region.

Under a few assumptions, the grid of points (or discretisation of the state space) can
be considered a hidden Markov model to which the corresponding filtering theory can
be applied, see [21] for filtering theory for HMMs. Although similar to the particle filter
approach this method differs in that the grid of points represents regions of the state space
(rather than fixed points) and the grid is fixed over time.

To develop a HMM approximation of the non-linear state equations we introduce the
following notation. Let X} denote the state of a discrete Markov state (or Markov chain)
at time k. Let {R;,..., Ry} denote N regions of the state space represented by the N
states of the discrete Markov state. That is, if z; € R; then X = i. The evolution of a

discrete Markov state is described by a state transition matrix Ay defined as follows:
AY = P(Xpy1 = i| Xk = §)
where Aij is the ijth element of Ay € RN*V.

To approximate the evolution of zx by a discrete state we approximate Ay as follows

Aij _ fR,— ij Pz lfﬂk_l)dzk_ld;z;k
k fij P($k|$k_1)dmk_1dzk )

It is assumed that p(zk|zk—1) is known and hence A; defined this way can always be

calculated. Once an initial value Xy is given, the discrete Markov state approximation of

the continuous state is completely specified.

Now an approximation of the non-linear observation process is required. The observation

process hi(.,.) can be approximated be defining a matrix Cj, as follows:

Clzc = hy (xia O)
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where O,’; is the ith element of C) and z* is a representative value of z in the region R;
(for example the middle of the region). Then the observation process can be approximated
as

Y & C,f“ + v
Standard HMM filtering solutions [21] on the HMM approximation can be applied if vy
is approximated as a Gaussian random variable. Let X i denote P(Xi = il{yo,---,Uk})-

Then the HMM filter is

L1 IR
Xi= N—kp(yijk =1i)y AYX]_, (6.11)
j=1
where
N N .
Ny = P(yelXp =1) > AYX]_,. (6.12)

i=1 j=1
This filter can be used to estimate the probability of the state being in each region (or
the PDF of the discretised system). Estimates of the state value or other statistics of the
state can be formed from Xj. For any general statistic, E[g(zx)|{%0;- - - , ¥k }], the following

estimate can be used: N
Elg(ze){vo,-- -y} = S‘_‘g(m’))i',,’c (6.13)
i=1

In particular, the conditional mean estimate of the state is

N
gp Y T X} (6.14)
=1

The HMM model that is developed is only an approximation of the true system but as

the number of grid points increase the quality of the approximation should improve.

The advantage of applying HMM filters to the discretised state space system is that HMM
filters are optimal in a conditional mean sense {on the discretised system) for any non-
linear state equations [21]. If the discretised system represents the true system well, then
the HMM filter should give good results. An additional advantage of the HMM filtering
approach is that it does not suffer degeneracy in the same way as the particle filter. The
grid is fixed in state space and hence the approximation to the PDF does not adapt as
the nature of the PDF changes and hence degeneracy does not occur. Unfortunately, the
fixed nature of the grid limits the accuracy of the approximation and the particle filter

approach may perform better if the degeneracy can be controlled.

29




DSTO-TR-1301

30

The major disadvantage of the HMM approach is that the state space can only be discre-
tised to a fixed grid of points when the variation in state variable can be bounded (because
a grid of points can only represent a finite region). This limits application of the HMM

approach to situations where the state space is naturally bounded.

~ - pat
X | | — B
— iy
1 N
i —
== =
y. N
< ?
'k k+1 Time
A

Figure 6 (U): Graphical interpretation of a HMM filter. The height of the bars represents
the probability of being in the region of state space represented by the width of the bars.

Although there are no solid theoretical results to support the approximation of non-linear
systems by HMMs there are several applications where this technique has been successfully

applied. These applications include bearing only tracking problems [22], frequency tracking

problefns [23], and phase tracking problems.

7 Application: Target Tracking

The application presented in this section is motivated by work being done in the Guid-
ance and Control group on the optimal precision guidance control problem. This control
problem describes the terminal phase of a interceptor-target engagement. In this section

we consider the filtering or state estimation problem related to the control problem.

For simplicity consider an engagement defined in continuous time and let the following
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definitions be in a 2-D Euclidean frame. Let (z!,3!) and (z7,y{) be the position of the
interceptor and target respectively. Then let (u},v]), (u ,v]), (af,b]) and (af,b]) be the
velocity and acceleration of the interceptor and target respectively.

Observations of the engagement are commonly related to the relative dynamics of the inter-

ceptor and target so we introduce the following state variable, X; := [z, s, ug, vy, al b7,

where z; := 7 — z] etc. The dynamics of the state can be expressed as follows

700100 0] [0 0 ] 0 0 ]
000100 0 0 0 0

dXp _ 0000 10|, |=1 0 |[a] | 0 0 wl Ao

g ~ |[00000 1| 0 -1||¢bf 0 0 wlet
0000O0O 0 0 cos0F —sin6f
(00000 0] L 0 0 | | sinf]  cos6F

dX,

-—E = AXt-f-B’U,t—*-G(Xt)wt (71)

where 8T = tan~! (v /uT) is the target heading angle, u; := [a], b])', and w; := [w; ™, w; **].

Although target acceleration is deterministically controlled by the target, in this model the
target acceleration has been approximated by a “jinking” type model through the noises
wTHon9 and wTet, This acceleration model is simplistic (see [19] for more realistic target

models) but is a reasonable representation in some situations.

Assume that the state is observed at evenly spaced distinct time instants ¢p,%1,...,%%,.-..
Let index k denote the kth observation corresponding to the time instant ¢ = t;. Consider
the following observation process

Ry + Rkwf} (7.2)

zk:f(th:wlﬁzawg):l:og 4 w}oc

where Ry = /22 +uZ, 0] =

Gaussian noises with variances 0% and o3 respectively.

-1 R0
tan~!(y;, /2, ) and w;’,wi are uncorrelated zero-mean

It is useful to consider a discrete-time representation of the continuous-time state equa-
tion (7.1) obtained through sampling theory. Let h = t; — t;—; then using sample hold

approximation the discrete-time state equation is

Ah -
th+1 = e th-i-Gtkwk or

Xpp1 = AXk-i-Gk(Dk (7.3)

where 0y = 1/h fttk’”" wydt and X etc. denote the discrete-time representation of Xj etc..

The variance of @, is 1/h times the variance of w;.
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We consider the engagement shown in Figure 7. The engagement commences at a dis-
tance of 5000 m. The interceptor is traveling at a velocity of 1000 m/s in a direction
36° (measured clockwise) from a line drawn between the interceptor and target. The in-
terceptor is traveling at a velocity of 660 m/s in a direction of 120° from the same line.
Hence, the initial conditions are (zf,y{,u{,v§) = (0,0,1000 cos(36°),1000sin(45°)) and
T, yT, uf, vf) = (5000,0,660 cos(120°), 660sin(120°)) where distances are in units of m

and velocities are in units of m/s. Assume no control action is taken by the interceptor.

N
660 m/s
1000 m/s
120°
36°

l S
A 7

N 5000 m

interceptor Target

Figure 7 (U): Engagement configuration. The interceptor and target are roughly heading
towards the same point (collision will not occur unless a manoeuvre is performed).

7.1 Extended Kalman Filter Approach

To apply the extended Kalman filter to this problem we obtain a linear approximation
for the state equation. We approximate the non-linearity in the driving term as a time-
varying linear functions (that is Ax = A and By = G (Xklk_ 1) where Xk,k_l is the one-
step-ahead prediction of X;). The measurement equation (7.2) is non-linear in the state

and linearisation at Xgx_; gives

C. — Jck(X)
¢ oX X=Xk
[ iﬁkm-l/Ryk—l ka—l/f?mk_l ]
~Gkik—1/ By Trjp-1/ By
0 0
= . 7.4
0 0 (7.4)
0 0
! 0 0 J
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The extended Kalman filter can now be implemented using the recursions (4.3) stated

above.

The extended Kalman filter was used in a simulated engagement to estimate the target
state at each time instant. The sampling rate of the simulation was 0.001 Hz. The initial
estimate of the target position was (5500,500) m and velocity errors of 5 ms™ in both
and y directions were present. The range measurement noise variance was 0.25Ry, where
Ry is the range at time k, and the angle measurement noise variance was 0.25. The target

was assumed to be non-accelerating.

Figure 8 shows a plot of both the target and interceptor trajectories as well as the inter-
ceptor’s estimate of the target’s position. The initial position error quickly reduces and
after 4.39 s, when the interceptor and target are 71 m apart (which is the closest distance
achieved) the error in the estimated target position is 0.67 m. The extended Kalman filter

also provides estimates of the target’s velocity.

3000 T T T T T
— - Interceptor
— Target

- Estimated Target

2500

2000 ’

m)
N

:1500— 4

1000 ,
4
7
e
7
/
7
500 ’ 4
d
/s
e
/
/

7 .

0 A 1 L 1 . "
0 1000 2000 3000 4000 5000 6000

x (m)

Figure 8 (U): Estimate Target Position
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7.1.1 Stability of the Extended Kalman Filter

The stability of the extended Kalman filter in this situation can be examined using the

results in Section 4.2. Because the state equations are linear the conditions for stability

stated in Theorem 1 simplify to
pro N
e—m1n<ex,22 ((1+_)+ );x) ) (7.5)
where we have used ¢ =1, @ = 1, €, is unbounded and &, = 0.

To determine whether stability of the extended Kalman filter can be assured for a partic-
ular initial error value we tested values of €, in (7.5). We investigated stability against
initial errors in the y position coordinate (assuming no error in zp). Figure 9 shows the
values of € achieved for various values of ¢, (note that this figure shows only the stability
at the initial time instant and the stability of the filter at later time instants needs to
be tested separately). From Figure 9, stability of the EKF can be guaranteed for initial
errors in y less that 180 m. Using (7.5) it can be shown that when yo is known, errors in

zo do not cause the EKF to diverge.

200 T T T T T T T T T

180
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E
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0 1 1

Figure 9 (U): The initial errors in yg for which the EKF is guaranteed to converge.

We know from the simulation results that the EKF converged from initial errors of 500m




DSTO-TR-1301

in both axis. This demonstrates that although useful, the bounds produced by (7.5) are

conservative.

7.2 Particle Filter and HMM Approaches

The particle filter was applied to the same target trajectory estimation problem. The noise
variance was lowered to 0.05R and 0.05 in the range and angle measurements respectively.
A system of 1000 particles was used to represent the evolution of the PDF. The initial
support of the particle filter was sampled from a Gaussian density function with a mean
displaced by the amount (500, 500, 0.5, 0.5, 0, 0) from the true initial state with a covariance
matrix diag([500%,5002,0.52,0.5%,1076,1075]). Here diag(X) is the operation of creating
a diagonal matrix from the vector X (if X is a vector) or the operation of making a vector

from the diagonal of the matrix X (if X is a matrix).

A new support set was obtained at every 10 time instants by resampling from a Gaussian

density function with the following mean and covariance:

NS
Iy = Zs}cw}c
i=1
NS
var(Zy) = Y (sp — Zx) (s} — Zx) wk, (7.6)

=1
where 7 is an estimate of the state and var(Z;) is the co-variance matrix for Z.
The observation noise was inflated to included the effect state estimation errors in the

following way:

var(Ry) = 0.05Ry; + Civar(z)C}

var(8y) = 0.05+ Cyvar(zk)Cs (7.7)

where C; and C, are the first and second rows of the linearisation matrix C used in the

EKF.

The particle filter was able to estimate the trajectory when initialised on the true initial
conditions; however, if initialised with any error, this error remained for the length of the
simulation and the filter was unable to correct for this error. These simulation results sug-
gests that when the initial PDF is not known the filter is neither divergent nor convergent

but not very useful for this application.
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HMM filter

To apply the HMM approach to this filtering problem requires discretisation of the state
space. The HMM approach is not computationally tractable for the above target trajectory
estimation problem. To illustrate the computational effort required consider the effort

required for even the most basic and coarse approximation.

Assume that the velocity and acceleration are known (which is a fairly restrictive assump-
tion in target tracking problems). For the configuration above, it is reasonable to bound
the position space to (—4500, 5500) in the x-axis and (0, 1000) in the y-axis. If this space
is coarsely discretised into 10 m by 10 m regions then 1 x 10? discrete states are required.
The HMM filter on a 1 x 10? state process will require in the order of 1 x 10® calculations
per time instant. Successful filtering is likely to require even finer discretisation than 10 m

and hence computational requirements are likely to be significant less tractable.

8 Conclusions

This report presented a review of recent non-linear and robust filtering results for stochas-
tic systems. Stability results for the extended Kalman filter and a robust Kalman filtering
solution were presented. The report also examined a recent non-parametric filtering tech-

nique known as the particle filter. Finally, some simulation examples were presented that

demonstrate the performance of several filters.

In many applications the extended Kalman filter may offer the best filtering solution, but
in highly non-linear problems this filter is unlikely to perform well. For more non-linear
problems there are various higher-order-model approaches that offer suboptimal filtering
solutions. For the most complex problems, generic approaches such as the non-parametric

particle filter may be appropriate, admittedly at a heavy computational cost.

All of these approaches assume certain knowledge of the state and measurement processes,
which is unrealistic in practice. On the other hand, robust Kalman filtering and similar
techniques mitigate for uncertainty in the system model, but this mitigation is generally

at some performance loss.

Out of all these possible filtering approaches, no one approach is superior to the all others
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and finding the most appropriate filter many require substantial investigation.
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